Circles Worksheet Day #1

Write an equation of a circle given the following information.

1.	Center (2, -4)	Radius 4	Equation (X-2) + (4+4) 2.16
2.	(-7, 1)	15	$(x+7)^2 + (y-1)^2 = 225$
3.	(3,0)	1/3	$(x-3)^2 + y^2 = \frac{1}{9}$
4.	(-5, -3)	3√2	$(x+5)^2 + (y+3)^2 = 18$

Write an equation of each circle described below. Show work!

5. Given a circle with center (3, -4) and passing through (6, 2). Find
$$(x-3)^2 + (y+y)^2 = 45$$

6. Given a circle with the center (5, 1) and a point on the circle (8, -2).
$$\sqrt{8}$$

7. Given a circle with the center at the origin and passing through
$$(4, 3)$$
.

Extension (Hint: find the coordinates of the center first)

Given a circle with (5, 1) and (3, -1) as the endpoints of the diameter.

Given a circle with (5, 1) and (3, -1) as the endpoints of the
$$(x-y)^2+y^2=2$$

$$(x-y)^2+y^2=2$$

$$(x-y)^2+y^2=2$$

Given a circle with (2, 1) and (6, -3) as the endpoints of the diameter.

$$M=\{3,-2\}$$
 $(x-4)^2+(y+3)=8$ $\sqrt{(6-4)^2+(-3+7)^2}$ $\sqrt{2^2+-2^2}$ $\sqrt{2^2+-2^2}$ $\sqrt{2^2+-2^2}$

Given a circle with (4, -3) and (2, 1) as the endpoints of the diameter. 10.

$$M = (\frac{1}{2}, -\frac{1}{4}) \qquad \Gamma = \sqrt{(1-3)^2 + (-3-1)^2} \qquad (x-3)^2 + (y+1)^2 = 5$$

$$C = (3,-1) \qquad r = \sqrt{1+1}$$

Created by: D. Roesler Katy ISD

Circles - Notes Day 1

General Form of the Equation of a Circle:

$$(X - h)^2 + (y - k)^2 = \int_{-\infty}^{2}$$

Center: (h, K) and radius = $\sqrt{r^2}$

Given the center and radius, write the equation.

Equation: $(x-5)^2 + (y-2)^2 = y9$

$$2 \quad C(-3, 4) \quad r = 2\sqrt{5}$$

$$(y --3)^2 + (y -4)^2 = 25^2$$

$$= 25^2$$

$$= 20$$

Equation: $(x+3)^2 + (y-4)^2 = 20$

Given the center and another point on the circle, write the equation.

To find r^2 either plug in the point or use the distance formula, $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.

Equation: $(x-4)^2 + (4+7)^2 = 101$

Find r^2 by plugging in the point (5,3): $(x-4)^2 + (y+7)^2 = r^2$ $(5-4)^2 + (3+7)^2 = r^2$ $(1)^2 + (10)^2 = r^2$

4 C arrigin and (-5, 2)

Equation: X +4 = 24

Find r² using the distance formula: